Named Entity Recognition Conversion
A guide for bidirectional V1/V2 conversion of Named Entity Recognition (NER) annotations for text.
Data Structure
V1 Structure
# annotations
{
"id": "ner_1",
"tool": "named_entity",
"isLocked": False,
"isVisible": True,
"isValid": True,
"classification": {
"class": "PERSON",
"confidence": 0.95
},
"label": ["PERSON"]
}
# annotationsData
{
"id": "ner_1",
"ranges": [{"start": 0, "end": 5}],
"content": "John"
}
V2 Structure
{
"id": "ner_1",
"classification": "PERSON",
"attrs": [
{"name": "confidence", "value": 0.95}
],
"data": {
"ranges": [{"start": 0, "end": 5}],
"content": "John"
}
}
Conversion Rules
V1 → V2
| V1 Field | V2 Field |
|---|---|
ranges | data.ranges |
content | data.content |
classification.class | classification |
classification.{other} | attrs[{name, value}] |
V2 → V1
| V2 Field | V1 Field |
|---|---|
data.ranges | ranges |
data.content | content |
classification | classification.class |
attrs[{name, value}] | classification.{name: value} |
Usage Examples
Basic Conversion
from synapse_sdk.utils.converters.dm import convert_v1_to_v2, convert_v2_to_v1
# V1 NER data
v1_data = {
"annotations": {
"text_1": [
{
"id": "NerAbc1234",
"tool": "named_entity",
"classification": {"class": "PERSON", "confidence": 0.95}
}
]
},
"annotationsData": {
"text_1": [
{
"id": "NerAbc1234",
"ranges": [{"start": 0, "end": 4}],
"content": "John"
}
]
}
}
# Convert to V2
result = convert_v1_to_v2(v1_data)
annotation_data = result["annotation_data"]
# Check V2 result
ner = annotation_data["texts"][0]["named_entity"][0]
print(ner["data"]["ranges"]) # [{"start": 0, "end": 4}]
print(ner["data"]["content"]) # "John"
print(ner["classification"]) # "PERSON"
Multiple Entity Processing
# Text with multiple named entities
# "John met Mary at New York."
v1_multi = {
"annotations": {
"text_1": [
{"id": "ner_john", "tool": "named_entity", "classification": {"class": "PERSON"}},
{"id": "ner_mary", "tool": "named_entity", "classification": {"class": "PERSON"}},
{"id": "ner_nyc", "tool": "named_entity", "classification": {"class": "LOCATION"}}
]
},
"annotationsData": {
"text_1": [
{"id": "ner_john", "ranges": [{"start": 0, "end": 4}], "content": "John"},
{"id": "ner_mary", "ranges": [{"start": 9, "end": 13}], "content": "Mary"},
{"id": "ner_nyc", "ranges": [{"start": 17, "end": 25}], "content": "New York"}
]
}
}
# Convert to V2
result = convert_v1_to_v2(v1_multi)
entities = result["annotation_data"]["texts"][0]["named_entity"]
for ent in entities:
print(f"{ent['classification']}: {ent['data']['content']} ({ent['data']['ranges']})")
# PERSON: John ([{"start": 0, "end": 4}])
# PERSON: Mary ([{"start": 9, "end": 13}])
# LOCATION: New York ([{"start": 17, "end": 25}])
Roundtrip Verification
def verify_ner_roundtrip(v1_original):
"""Verify NER roundtrip"""
# V1 → V2 → V1
v2_result = convert_v1_to_v2(v1_original)
v1_restored = convert_v2_to_v1(v2_result)
# Compare data
orig_data = v1_original["annotationsData"]["text_1"][0]
rest_data = v1_restored["annotationsData"]["text_1"][0]
assert orig_data["ranges"] == rest_data["ranges"]
assert orig_data["content"] == rest_data["content"]
print("NER roundtrip verification successful")
verify_ner_roundtrip(v1_data)
Entity Types
Commonly used entity types:
| Type | Description | Example |
|---|---|---|
| PERSON | Person | John, Mary |
| ORGANIZATION | Organization | Google, Samsung |
| LOCATION | Location | Seoul, New York |
| DATE | Date | January 2025 |
| TIME | Time | 3:00 PM |
| MONEY | Currency | $100, 10,000 won |